برآورد ریسک و بازده سهام با استفاده از رویکرد ترکیبی برنامه¬ریزی ترجیحات فازی لگاریتمی و شبکه¬های عصبی
محورهای موضوعی :ابوالفضل دهقانی فیروزآبادی 1 * , داریوش فرید 2 , وجیهه عندلیب اردکانی 3
1 - دانشگاه میبد
2 - دانشگاه یزد
3 - دانشگاه یزد
کلید واژه: بازار سهام, سبد سهام, برنامه¬ریزی ترجیحات فازی لگاریتمی, شبکه¬های عصبی.,
چکیده مقاله :
هدف: پژوهش حاضر با هدف شناسایی متغیرهای مؤثر بر انتخاب سبد سهام و نیز اولویت¬بندی این متغیرها و نیز برآورد ریسک و بازده سهام نمونه با استفاده از الگوریتم شبکه¬های عصبی انجام شده است. ضرورت: مسأله انتخاب سبد سهام همواره یکی از موضوعات جذاب و کاربردی در مسائل مالی و بازارهای مالی بوده است. در راستای برطرف کردن معایب موجود درپژوهش¬های مربوط به انتخاب سبد سهام، ایده به¬کارگیری روش برنامه¬ریزی ترجیحات فازی لگاریتمی برای تحلیل عوامل مؤثر بر انتخاب سبد سهام و استفاده از شبکه¬های عصبی جهت برآورد ریسک و بازده تقویت می¬شود. روش شناسی: پژوهش حاضر رویکردی ترکیبی و جدید برای انتخاب سبد سهام ارائه می¬دهد که شامل دو مرحله است: در مرحله اول از طریق مصاحبه با خبرگان و نیز بررسی مدارک و اسناد موجود، 6 معیار اصلی انتخاب سبد بهینه سهام را شناسایی نموده و با استفاده از رویکرد برنامه¬ریزی ترجیحات فازی لگاریتمی، وزن این معیارها تعیین می¬شود و در مرحله دوم ریسک و بازده سهام با استفاده از الگوریتم شبکه¬های عصبی پیش¬بینی می¬شود. یافتهها: یافته¬ها نشان می¬دهد معیارهای سودآوری، کارایی و ریسک به ترتیب مهمترین معیارها در انتخاب سبد بهینه سهام می¬باشد. همچنین شبکه¬عصبی طراحی شده توانسته است به خوبی بازده و ریسک سهام را برازش نماید.
The present research aims to identify the influential variables on stock portfolio selection, prioritize these variables, and estimate the risk and return of sample stocks using neural network algorithms. Rationale: Stock portfolio selection has always been an intriguing and practical issue in financial matters and financial markets. In order to address the existing drawbacks in research related to stock portfolio selection, the idea of employing the fuzzy logarithmic preference programming method for analyzing factors affecting stock portfolio selection and utilizing neural networks for risk and return estimation is reinforced. Methodology: The present research offers a novel combined approach for stock portfolio selection consisting of two stages: In the first stage, by conducting interviews with experts and examining available documents and records, six primary criteria for selecting an optimal stock portfolio are identified. Using the fuzzy logarithmic preference programming approach, the weights of these criteria are determined. In the second stage, the risk and return of stocks are predicted using neural network algorithms. Conclusion: The findings indicate that profitability, efficiency, and risk are the most important criteria in selecting an optimal stock portfolio, respectively. Additionally, the designed neural network successfully fitted the returns and risks of stocks.
Azar, A. Memariani, A. (1997). Shula Planning, a new technique for planners, Shahed University Scientific Journal, No. 9 and 10.(In Persian)
Azar, A. Ramoz, N. Atefeh Doost, A. (2011). Application of non-biased set estimation method in optimal portfolio selection, Financial Research Quarterly, No. 14, 1-14.(In Persian)
Farid, D. Dehghani Firouzabadi. A, Andalib Ardakani. D, Mirzaei. H, (2021),Analysis of the factors affecting the selection of the stock portfolio using the fuzzy logarithmic preference planning approach,Tomorrow's management,No. 66(20), 79-90.(In Persian)
Islami Bidgoli, G. Saranj, A. (2008). Portfolio selection using three criteria of average return, standard deviation of return and liquidity in Tehran Stock Exchange, Journal of Accounting and Auditing Studies, No. 53.(In Persian)
Afsharkazemi, M. Khalili Iraqi, M. Sadat-kiai, A. (2011). Selection of stock portfolio in Tehran stock exchange by combining data coverage analysis method and ideal planning, financial knowledge of securities analysis, number 13, 63-49.(In Persian)
Amirian, S. Amiri, M. (2012). The effect of using multi-indicator methods with fuzzy approach on the performance of selected portfolio in Tehran Stock Exchange, 10th International Industrial Engineering Conference, Tehran, Iran Industrial Engineering Association, Amirkabir University of Technology.(In Persian)
Anwari Rostami, A. Hassanian, Sh. Rezaei Asl, M. (2011). Financial ranking of Tehran Stock Exchange companies using multi-indicator decision-making methods and hybrid models, Financial Research Quarterly, No. 14(1), 31-54. (In Persian)
Babaei, p. Ghaemi, A. (2011). Presenting a dual-objective model for the portfolio selection problem considering different risk metrics, 8th International Industrial Engineering Conference, Tehran: Industrial Engineering Society of Iran, Amirkabir University of Technology. (In Persian)
Behnamian C, Mashrafe. M, (2017). Presenting a hybrid algorithm for multi-objective optimization of the stock portfolio by means of fuzzy programming, Journal of Financial Engineering and Securities Management, No. 30. (In Persian)
Tehrani, R. (2011). Financial Management, Tehran, Negah Danesh Publications. (In Persian)
Hamedian, M. (2000). Investigating factors affecting stock prices and investors' decisions in Tehran Stock Exchange, Master's thesis, Shahid Beheshti University. (In Persian)
Delbari, M. (2001). Investigating effective criteria on stock selection in Tehran Bahadur Stock Exchange based on Hierarchical Analysis Process Model, Master's Thesis, University of Isfahan. (In Persian)
Rai, R. Poyanfar, A. (2008). Advanced Investment Management, Tehran, Samt Publications. (In Persian)
Shah Alizadeh, M. Memariani, A. (2003). Mathematical framework of stock portfolio selection with multiple objectives, accounting and auditing reviews, Tehran University Faculty of Management Journal, No. 32, pp. 83-102. (In Persian)
Mirghfouri, H. (2009). The application of the fuzzy hierarchical analysis process in prioritizing factors affecting stock selection in Tehran Stock Exchange from the perspective of shareholders, Development and Capital Journal, second year, number 3, pp. 11-130. (In Persian)
K. Po-Chang and L. Ping-Chen. (2008). Resource allocation neural network in portfolio selection, Expert Systems with Applications, Vol. 35, Issues 1-2, July–August, pp. 330-337.
Mainik, G. Mitov, G and Rüschendorf,L. (2015). Portfolio optimization for heavy-tailed assets: Extreme Risk Index vs. Markowitz, Journal of Empirical Finance.
Markowitz, H. (1952). Portfolio selection. The journal of finance, 7(1), 77-91.
Sharpe, W. F., Alexander, G. J. & Bailey, J. V. (1999). Investments (Vol.6). New Jerse^ eNJ NJ: Prentice Hall.
Squyres .J.G. (1998) A Quick Peek According to Graham and Dodd, Journal of Financial Statement Analysis, 78-93, fall.
Wang, Y. M. & Chin, K. S. (2011). Fuzzy analytic hierarchy process: A logarithmic fuzzy preference programming methodology. International Journal of Approximate Reasoning, 52(4), 541-553.
Zopounidis, C. (2013). Multicriteria decision aid in financial management. European Journal of Operational Research, 11(9), 404-415.